Back to Search Start Over

Multiplication of photonic band gaps in one-dimensional photonic crystals by using hyperbolic metamaterial in IR range

Authors :
Aliaa G. Mohamed
Walied Sabra
Ahmed Mehaney
Arafa H. Aly
Hussein A. Elsayed
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-15 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract The light-slowing effect near band endpoints is frequently exploited in photonic crystals to enhance the optical transmittance. In a one-dimensional binary photonic crystal (1DPC) made of hyperbolic metamaterials (HMMs), we theoretically examined the angle-dependent omnidirectional photonic bandgap (PBG) for TM polarization. Using the transfer matrix approach, the optical characteristics of the 1DPC structure having dielectric and HMM layers were examined at the infrared range (IR). As such, we observed the existing of numerous PBGs in this operating wavelength range (IR). Meanwhile, the HMM layer is engineered by the subwavelength dielectric- nanocomposite multilayers. The filling fraction of nanoparticles have been explored to show how they affect the effective permittivity of the HMM layer. Furthermore, the transmittance properties of the suggested structure are investigated at various incident angles for transverse magnetic (TM) and transverse electric polarizations. Other parameters such as, the permittivity of the host material, the filling fraction of nanoparticles, and the thickness of the second layer (HMM) are also taken into account. Finally, we investigated the effect of these parameters on the number and the width of the (PBGs). With the optimum values of the optical parameters of the nanocomposite (NC) layer, this research could open the way for better multi-channel filter photonic crystals.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.958550efcb4a4caabe5e3140daa6153d
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-27550-2