Back to Search Start Over

B-FLOWS: Biofouling Focused Learning and Observation for Wide-Area Surveillance in Tidal Stream Turbines

Authors :
Haroon Rashid
Houssem Habbouche
Yassine Amirat
Abdeslam Mamoune
Hosna Titah-Benbouzid
Mohamed Benbouzid
Source :
Journal of Marine Science and Engineering, Vol 12, Iss 10, p 1828 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Biofouling, the accumulation of marine organisms on submerged surfaces, presents significant operational challenges across various marine industries. Traditional detection methods are labor intensive and costly, necessitating the development of automated systems for efficient monitoring. The study presented in this paper focuses on detecting biofouling on tidal stream turbine blades using camera-based monitoring. The process begins with dividing the video into a series of images, which are then annotated to identify and select the bounding boxes containing objects to be detected. These annotated images are used to train YOLO version 8 to detect biofouled and clean blades in the images. The proposed approach is evaluated using metrics that demonstrate the superiority of this YOLO version compared to previous ones. To address the issue of misdetection, a data augmentation approach is proposed and tested across different YOLO versions, showing its effectiveness in improving detection quality and robustness.

Details

Language :
English
ISSN :
20771312
Volume :
12
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Journal of Marine Science and Engineering
Publication Type :
Academic Journal
Accession number :
edsdoj.95afb1ebf7b4f4cae7a5ead7eaff14e
Document Type :
article
Full Text :
https://doi.org/10.3390/jmse12101828