Back to Search Start Over

Novel optical optode for selective detection and removal of ultra-trace level of mercury ions in different environmental real samples

Authors :
Hager A. Dayra
Magdy Y. Abdelaal
Magdi E. Khalifa
A. B. Abdallah
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-12 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Owing to the high cost and unavailability of different analytical techniques, there is an urgent need to develop new techniques not only for detecting but also removing mercury ions in real samples. Thus, an optical chemical sensor based on the anchoring of phenanthraquinone monophenylthiosemicarbazone in a plasticized cellulose triacetate membrane was fabricated and applied to the recognition and removal of mercury ions from aqueous solutions. The synthesized optode was characterized by FT-IR, SEM, AFM, and thermal analysis. Several parameters, including the pH, temperature, contact time, washing solvent, and washing time, were optimized. Under optimal conditions, a promising optode film platform was utilized for sensing mercury ions, and the concentrations were calculated based on colorimetric analysis (Histogram, RGB) of digital images, visualization, and spectrophotometry. Also, an optical optode was used for complete adsorption of mercury ions from aqueous solutions. In addition, the regeneration of the synthesized optode was evaluated using 0.1 mol L− 1 nitric acid, which effectively removed all adsorbed mercury ions. The obtained data indicated good linearity in the sensing and adsorption of Hg2+ over a concentration range of 0.005–5000 µgL − 1 with a low limit of detection (LOD = 0.066 µgL− 1) and limit of quantification (LOQ, 0.22 µgL − 1 ). Furthermore, it showed good distinctions in the presence of coexisting ions, high stability (five months), good applicability, and reproducibility (RSD = 1.31%), making it a promising sensor for Hg2+ detection. On the other hand, the kinetic studies revealed that the pseudo-second-order was the best model for describing the adsorption behavior of mercury ions on the optode surface. Also, the thermodynamic parameters indicate spontaneous (ΔG0

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.9695a7e1e87e4640a2e28461c1ab5f1e
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-76571-y