Back to Search Start Over

Disruption of the Lotus japonicus transporter LjNPF2.9 increases shoot biomass and nitrate content without affecting symbiotic performances

Authors :
Stefano Sol
Vladimir Totev Valkov
Alessandra Rogato
Mélanie Noguero
Laura Gargiulo
Giacomo Mele
Benoit Lacombe
Maurizio Chiurazzi
Source :
BMC Plant Biology, Vol 19, Iss 1, Pp 1-14 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background After uptake from soil into the root tissue, distribution and allocation of nitrate throughout the whole plant body, is a critical step of nitrogen use efficiency (NUE) and for modulation of plant growth in response to various environmental conditions. In legume plants nitrate distribution is also important for the regulation of the nodulation process that allows to fix atmospheric N (N2) through the symbiotic interaction with rhizobia (symbiotic nitrogen fixation, SNF). Results Here we report the functional characterization of the Lotus japonicus gene LjNPF2.9, which is expressed mainly in the root vascular structures, a key localization for the control of nitrate allocation throughout the plant body. LjNPF2.9 expression in Xenopus laevis oocytes induces 15NO3 accumulation indicating that it functions as a nitrate importer. The phenotypic characterization of three independent knock out mutants indicates an increased shoot biomass in the mutant backgrounds. This phenotype is associated to an increased/decreased nitrate content detected in the shoots/roots. Furthermore, our analysis indicates that the accumulation of nitrate in the shoot does not affect the nodulation and N-Fixation capacities of the knock out mutants. Conclusions This study shows that LjNPF2.9 plays a crucial role in the downward transport of nitrate to roots, occurring likely through a xylem-to-phloem loading-mediated activity. The increase of the shoot biomass and nitrate accumulation might represent a relevant phenotype in the perspective of an improved NUE and this is further reinforced in legume plants by the reported lack of effects on the SNF efficiency.

Details

Language :
English
ISSN :
14712229
Volume :
19
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Plant Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.96fb75dae66413599058777338b0af1
Document Type :
article
Full Text :
https://doi.org/10.1186/s12870-019-1978-5