Back to Search Start Over

Molecular Design, Preparation, and Characterization of Fluoro-Containing Polyimide Ultrafine Fibrous Membranes with High Whiteness, High Thermal Stability, and Good Hydrophobicity

Authors :
Zhen Pan
Han-li Wang
Hao-ran Qi
Yan-shuang Gao
Xiao-lei Wang
Xin-xin Zhi
Yan Zhang
Xi Ren
Jin-gang Liu
Source :
Molecules, Vol 27, Iss 17, p 5447 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Polymeric ultrafine fibrous membranes (UFMs) with high thermal stability and high whiteness are highly desired in modern optoelectronic applications. A series of fluoro-containing polyimide (FPI) UFMs with high whiteness, good thermal stability, and good hydrophobicity were prepared via a one-step electrospinning procedure from the organo-soluble FPI resins derived from a fluoro-containing dianhydride, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and various diamines containing either pendant trifluoromethyl (–CF3) groups or alicyclic units in the side chains. The obtained FPI UFMs, including FPI-1 from 6FDA and 3,5-diaminobenzotrifluoride (TFMDA), FPI-2 from 6FDA and 2′-trifluoromethyl-3,4′-oxydianiline (3FODA), FPI-3 from 6FDA and 1,4-bis[(4-amino-2-trifluoromethyl)phenoxy]benzene (6FAPB), FPI-4 from 4,4′-bis[(4-amino-2-trifluoromethyl)phenoxy]biphenyl (6FBAB), and FPI-5 from 6FDA and 4′-tert-butyl-cyclohexyl-3,5-diaminobenzoate (DABC) showed whiteness indices (WI) higher than 87.00 and optical reflectance values higher than 80% at the wavelength of 457 nm (R457), respectively. The FPI-5 UFM, especially, showed the highest WI of 92.88. Meanwhile, the prepared PI UFMs exhibited good hydrophobic features with water contact angles (WCA) higher than 105°. At last, the PI UFMs exhibited good thermal stability with glass transition temperatures (Tg) higher than 255 °C, and the 5% weight-loss temperatures (T5%) higher than 510 °C in nitrogen.

Details

Language :
English
ISSN :
14203049
Volume :
27
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.97009f9b5497436eb55944e0628d6d72
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules27175447