Back to Search
Start Over
Molecular Design, Preparation, and Characterization of Fluoro-Containing Polyimide Ultrafine Fibrous Membranes with High Whiteness, High Thermal Stability, and Good Hydrophobicity
- Source :
- Molecules, Vol 27, Iss 17, p 5447 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- Polymeric ultrafine fibrous membranes (UFMs) with high thermal stability and high whiteness are highly desired in modern optoelectronic applications. A series of fluoro-containing polyimide (FPI) UFMs with high whiteness, good thermal stability, and good hydrophobicity were prepared via a one-step electrospinning procedure from the organo-soluble FPI resins derived from a fluoro-containing dianhydride, 4,4′-(hexafluoroisopropylidene) diphthalic anhydride (6FDA), and various diamines containing either pendant trifluoromethyl (–CF3) groups or alicyclic units in the side chains. The obtained FPI UFMs, including FPI-1 from 6FDA and 3,5-diaminobenzotrifluoride (TFMDA), FPI-2 from 6FDA and 2′-trifluoromethyl-3,4′-oxydianiline (3FODA), FPI-3 from 6FDA and 1,4-bis[(4-amino-2-trifluoromethyl)phenoxy]benzene (6FAPB), FPI-4 from 4,4′-bis[(4-amino-2-trifluoromethyl)phenoxy]biphenyl (6FBAB), and FPI-5 from 6FDA and 4′-tert-butyl-cyclohexyl-3,5-diaminobenzoate (DABC) showed whiteness indices (WI) higher than 87.00 and optical reflectance values higher than 80% at the wavelength of 457 nm (R457), respectively. The FPI-5 UFM, especially, showed the highest WI of 92.88. Meanwhile, the prepared PI UFMs exhibited good hydrophobic features with water contact angles (WCA) higher than 105°. At last, the PI UFMs exhibited good thermal stability with glass transition temperatures (Tg) higher than 255 °C, and the 5% weight-loss temperatures (T5%) higher than 510 °C in nitrogen.
Details
- Language :
- English
- ISSN :
- 14203049
- Volume :
- 27
- Issue :
- 17
- Database :
- Directory of Open Access Journals
- Journal :
- Molecules
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.97009f9b5497436eb55944e0628d6d72
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/molecules27175447