Back to Search Start Over

Fast Adaptive Beamforming for Weather Observations with Convolutional Neural Networks

Authors :
Yoon-SL Kim
David Schvartzman
Tian-You Yu
Robert D. Palmer
Source :
Remote Sensing, Vol 15, Iss 17, p 4129 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Polarimetric phased array radar (PAR) can achieve high temporal resolutions for improved meteorological observations with digital beamforming (DBF). The Fourier method performs DBF deterministically, and produces antenna radiation patterns with fixed sidelobe levels and angular resolution by pre-computing the beamforming weights based on the geometry of receivers. In contrast, the Capon method performs DBF adaptively in response to the changing environment by computing the beamforming weights from the received signals at multiple channels. However, it becomes computationally expensive as the number of receivers grows. This paper presents computationally efficient adaptive beamforming with an application of convolutional neural networks, named ABCNN. ABCNN is trained with the phase and amplitude of complex-valued time-series IQ signals and the Capon beamforming weights as input and output. ABCNN is tested and evaluated using simulated time-series data from both point targets and weather scatterers for a planar of fully digital PAR architecture. The preliminary results show that ABCNN lowers computation time by a factor of three, compared to the Capon method, for a phased array antenna with 1024 elements, while mitigating the contamination from sidelobes by placing nulls at the location of the clutter. Furthermore, ABCNN produces antenna patterns similar to those from the Capon method, which shows that it has successfully learned the data.

Details

Language :
English
ISSN :
20724292
Volume :
15
Issue :
17
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.983b6c23bf1406b90d3819d8531047d
Document Type :
article
Full Text :
https://doi.org/10.3390/rs15174129