Back to Search
Start Over
Structure of Iso-Symmetric Operators
- Source :
- Axioms, Vol 10, Iss 4, p 256 (2021)
- Publication Year :
- 2021
- Publisher :
- MDPI AG, 2021.
-
Abstract
- For a Hilbert space operator T∈B(H), let LT and RT∈B(B(H)) denote, respectively, the operators of left multiplication and right multiplication by T. For positive integers m and n, let ▵T∗,Tm(I)=(LT∗RT−I)m(I) and δT∗,Tn(I)=(LT∗−RT)m(I). The operator T is said to be (m,n)-isosymmetric if ▵T∗,TmδT∗,Tn(I)=0. Power bounded (m,n)-isosymmetric operators T∈B(H) have an upper triangular matrix representation T=T1T30T2∈B(H1⊕H2) such that T1∈B(H1) is a C0.-operator which satisfies δT1∗,T1n(I|H1)=0 and T2∈B(H2) is a C1.-operator which satisfies AT2=(Vu⊕Vb)|H2A, A=limt→∞T2∗tT2t, Vu is a unitary and Vb is a bilateral shift. If, in particular, T is cohyponormal, then T is the direct sum of a unitary with a C00-contraction.
Details
- Language :
- English
- ISSN :
- 20751680
- Volume :
- 10
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Axioms
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9964ab2e6480fb8e06502ec6ddecf
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/axioms10040256