Back to Search Start Over

Integrating SAR and Optical Data for Aboveground Biomass Estimation of Coastal Wetlands Using Machine Learning: Multi-Scale Approach

Authors :
Mohammadali Hemati
Masoud Mahdianpari
Hodjat Shiri
Fariba Mohammadimanesh
Source :
Remote Sensing, Vol 16, Iss 5, p 831 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Coastal wetlands encompass diverse ecosystems such as tidal marshes, mangroves, and seagrasses, which harbor substantial amounts of carbon (C) within their vegetation and soils. Despite their relatively small global extent, these wetlands exhibit carbon sequestration rates on par with those observed in terrestrial forests. The application of remote sensing technologies offers a promising means of monitoring aboveground biomass (AGB) in wetland environments. However, the scarcity of field data poses a significant challenge to the utilization of spaceborne data for accurate estimation of AGB in coastal wetlands. To address this limitation, this study presents a novel multi-scale approach that integrates field data, aerial imaging, and satellite platforms to generate high-quality biomass maps across varying scales. At the fine scale level, the AVIRIS-NG hyperspectral data were employed to develop a model for estimating AGB with an exceptional spatial resolution of 5 m. Subsequently, at a broader scale, large-scale and multitemporal models were constructed using spaceborne Sentinel-1 and Sentinel-2 data collected in 2021. The Random Forest (RF) algorithm was utilized to train spring, fall and multi-temporal models using 70% of the available reference data. Using the remaining 30% of untouched data for model validation, Root Mean Square Errors (RMSE) of 0.97, 0.98, and 1.61 Mg ha−1 was achieved for the spring, fall, and multi-temporal models, respectively. The highest R-squared value of 0.65 was achieved for the multi-temporal model. Additionally, the analysis highlighted the importance of various features in biomass estimation, indicating the contribution of different bands and indices. By leveraging the wetland inventory classification map, a comprehensive temporal analysis was conducted to examine the average and total AGB dynamics across various wetland classes. This analysis elucidated the patterns and fluctuations in AGB over time, providing valuable insights into the temporal dynamics of these wetland ecosystems.

Details

Language :
English
ISSN :
20724292
Volume :
16
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Remote Sensing
Publication Type :
Academic Journal
Accession number :
edsdoj.9af813d29e0440c39e3cfa63544d401f
Document Type :
article
Full Text :
https://doi.org/10.3390/rs16050831