Back to Search Start Over

Investigating heartbeat-related in-plane motion and stress levels induced at the aortic root

Authors :
Wei Wei
Morgane Evin
Stanislas Rapacchi
Frank Kober
Monique Bernard
Alexis Jacquier
Cyril J. F. Kahn
Michel Behr
Source :
BioMedical Engineering OnLine, Vol 18, Iss 1, Pp 1-15 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background The axial motion of aortic root (AR) due to ventricular traction was previously suggested to contribute to ascending aorta (AA) dissection by increasing its longitudinal stress, but AR in-plane motion effects on stresses have never been studied. The objective is to investigate the contribution of AR in-plane motion to AA stress levels. Methods The AR in-plane motion was assessed on magnetic resonance imagining data from 25 healthy volunteers as the movement of the AA section centroid. The measured movement was prescribed to the proximal AA end of an aortic finite element model to investigate its influences on aortic stresses. The finite element model was developed from a patient-specific geometry using LS-DYNA solver and validated against the aortic distensibility. Fluid–structure interaction (FSI) approach was also used to simulate blood hydrodynamic effects on aortic dilation and stresses. Results The AR in-plane motion was 5.5 ± 1.7 mm with the components of 3.1 ± 1.5 mm along the direction of proximal descending aorta (PDA) to AA centroid and 3.0 ± 1.3 mm perpendicularly under the PDA reference system. The AR axial motion elevated the longitudinal stress of proximal AA by 40% while the corresponding increase due to in-plane motion was always below 5%. The stresses at proximal AA resulted approximately 7% less in FSI simulation with blood flow. Conclusions The AR in-plane motion was comparable with the magnitude of axial motion. Neither axial nor in-plane motion could directly lead to AA dissection. It is necessary to consider the heterogeneous pressures related to blood hydrodynamics when studying aortic wall stress levels.

Details

Language :
English
ISSN :
1475925X
Volume :
18
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BioMedical Engineering OnLine
Publication Type :
Academic Journal
Accession number :
edsdoj.9b355558d21d4613858b4c9a816edc92
Document Type :
article
Full Text :
https://doi.org/10.1186/s12938-019-0632-7