Back to Search Start Over

Predict models for prolonged ICU stay using APACHE II, APACHE III and SAPS II scores: A Japanese multicenter retrospective cohort study

Authors :
Daiki Takekawa
Hideki Endo
Eiji Hashiba
Kazuyoshi Hirota
Source :
PLoS ONE, Vol 17, Iss 6 (2022)
Publication Year :
2022
Publisher :
Public Library of Science (PLoS), 2022.

Abstract

Prolonged ICU stays are associated with high costs and increased mortality. Thus, early prediction of such stays would help clinicians to plan initial interventions, which could lead to efficient utilization of ICU resources. The aim of this study was to develop models for predicting prolonged stays in Japanese ICUs using APACHE II, APACHE III and SAPS II scores. In this multicenter retrospective cohort study, we analyzed the cases of 85,558 patients registered in the Japanese Intensive care Patient Database between 2015 and 2019. Prolonged ICU stay was defined as an ICU stay of >14 days. Multivariable logistic regression analyses were performed to develop three predictive models for prolonged ICU stay using APACHE II, APACHE III and SAPS II scores, respectively. After exclusions, 79,620 patients were analyzed, 2,364 of whom (2.97%) experienced prolonged ICU stays. Multivariable logistic regression analyses showed that severity scores, BMI, MET/RRT, postresuscitation, readmission, length of stay before ICU admission, and diagnosis at ICU admission were significantly associated with higher risk of prolonged ICU stay in all models. The present study developed predictive models for prolonged ICU stay using severity scores. These models may be helpful for efficient utilization of ICU resources.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
17
Issue :
6
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.9b5c46a1cf67431cb21ad628f0445520
Document Type :
article