Back to Search
Start Over
Systematic analysis of noise reduction properties of coupled and isolated feed-forward loops.
- Source :
- PLoS Computational Biology, Vol 17, Iss 12, p e1009622 (2021)
- Publication Year :
- 2021
- Publisher :
- Public Library of Science (PLoS), 2021.
-
Abstract
- Cells can maintain their homeostasis in a noisy environment since their signaling pathways can filter out noise somehow. Several network motifs have been proposed for biological noise filtering and, among these, feed-forward loops have received special attention. Specific feed-forward loops show noise reducing capabilities, but we notice that this feature comes together with a reduced signal transducing performance. In posttranslational signaling pathways feed-forward loops do not function in isolation, rather they are coupled with other motifs to serve a more complex function. Feed-forward loops are often coupled to other feed-forward loops, which could affect their noise-reducing capabilities. Here we systematically study all feed-forward loop motifs and all their pairwise coupled systems with activation-inactivation kinetics to identify which networks are capable of good noise reduction, while keeping their signal transducing performance. Our analysis shows that coupled feed-forward loops can provide better noise reduction and, at the same time, can increase the signal transduction of the system. The coupling of two coherent 1 or one coherent 1 and one incoherent 4 feed-forward loops can give the best performance in both of these measures.
- Subjects :
- Biology (General)
QH301-705.5
Subjects
Details
- Language :
- English
- ISSN :
- 1553734X and 15537358
- Volume :
- 17
- Issue :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- PLoS Computational Biology
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9bc478856a214e7b9aafab2f92aab1f7
- Document Type :
- article
- Full Text :
- https://doi.org/10.1371/journal.pcbi.1009622