Back to Search Start Over

Activation of Peracetic Acid with Lanthanum Cobaltite Perovskite for Sulfamethoxazole Degradation under a Neutral pH: The Contribution of Organic Radicals

Authors :
Xuefei Zhou
Haowei Wu
Longlong Zhang
Bowen Liang
Xiaoqi Sun
Jiabin Chen
Source :
Molecules, Vol 25, Iss 12, p 2725 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Advanced oxidation processes (AOPs) are effective ways to degrade refractory organic contaminants, relying on the generation of inorganic radicals (e.g., •OH and SO4•−). Herein, a novel AOP with organic radicals (R-O•) was reported to degrade contaminants. Lanthanum cobaltite perovskite (LaCoO3) was used to activate peracetic acid (PAA) for organic radical generation to degrade sulfamethoxazole (SMX). The results show that LaCoO3 exhibited an excellent performance on PAA activation and SMX degradation at neutral pH, with low cobalt leaching. Meanwhile, LaCoO3 also showed an excellent reusability during PAA activation. In-depth investigation confirmed CH3C(O)O• and CH3C(O)OO• as the key reactive species for SMX degradation in LaCoO3/PAA system. The presence of Cl− (1–100 mM) slightly inhibited the degradation of SMX in the LaCoO3/PAA system, whereas the addition of HCO3− (0.1–1 mM) and humic aid (1–10 mg/L) could significantly inhibit SMX degradation. This work highlights the generation of organic radicals via the heterogeneous activation of PAA and thus provides a promising way to destruct contaminants in wastewater treatment.

Details

Language :
English
ISSN :
14203049
Volume :
25
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.9bc645e8433747ae95f98ed78f8b37d3
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules25122725