Back to Search
Start Over
Optical Detection of Fe3+ Ions in Aqueous Solution with High Selectivity and Sensitivity by Using Sulfasalazine Functionalized Microgels
- Source :
- Sensors, Vol 19, Iss 19, p 4223 (2019)
- Publication Year :
- 2019
- Publisher :
- MDPI AG, 2019.
-
Abstract
- A highly selective and sensitive optical sensor was developed to colorimetric detect trace Fe3+ ions in aqueous solution. The sensor was the sulfasalazine (SSZ) functionalized microgels (SSZ-MGs), which were fabricated via in-situ quaternization reaction. The obtained SSZ-MGs had hydrodynamic radius of about 259 ± 24 nm with uniform size distribution at 25 °C. The SSZ-MG aqueous suspensions can selectively and sensitively response to Fe3+ ions in aqueous solution at 25 °C and pH of 5.6, which can be quantified by UV-visible spectroscopy and also easily distinguished by the naked eye. Job’s plot indicated that the molar binding ratio of SSZ moiety in SSZ-MGs to Fe3+ was close to 1:1 with an apparent association constant of 1.72 × 104 M−1. A linear range of 0−12 μM with the detection limit of 0.110 μM (0.006 mg/L) was found. The obtained detection limit was much lower than the maximum allowance level of Fe3+ ions in drinking water (0.3 mg/L) regulated by the Environmental Protection Agency (EPA) of the United States. The existence of 19 other species of metal ions, namely, Ag+, Li+, Na+, K+, Ca2+, Ba2+, Cu2+, Ni2+, Mn2+, Pb2+, Zn2+, Cd2+, Co2+, Cr3+, Yb3+, La3+, Gd3+, Ce3+, and Bi3+, did not interfere with the detection of Fe3+ ions.
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 19
- Issue :
- 19
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.9c36e960151c4931a7803042be2fb7b2
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s19194223