Back to Search Start Over

Identification of loci of functional relevance to Barrett's esophagus and esophageal adenocarcinoma: Cross-referencing of expression quantitative trait loci data from disease-relevant tissues with genetic association data.

Authors :
Julia Schröder
Vitalia Schüller
Andrea May
Christian Gerges
Mario Anders
Jessica Becker
Timo Hess
Nicole Kreuser
René Thieme
Kerstin U Ludwig
Tania Noder
Marino Venerito
Lothar Veits
Thomas Schmidt
Claudia Fuchs
Jakob R Izbicki
Arnulf H Hölscher
Dani Dakkak
Boris Jansen-Winkeln
Yusef Moulla
Orestis Lyros
Stefan Niebisch
Matthias Mehdorn
Hauke Lang
Dietmar Lorenz
Brigitte Schumacher
Rupert Mayershofer
Yogesh Vashist
Katja Ott
Michael Vieth
Josef Weismüller
Elisabeth Mangold
Markus M Nöthen
Susanne Moebus
Michael Knapp
Horst Neuhaus
Thomas Rösch
Christian Ell
Ines Gockel
Johannes Schumacher
Anne C Böhmer
Source :
PLoS ONE, Vol 14, Iss 12, p e0227072 (2019)
Publication Year :
2019
Publisher :
Public Library of Science (PLoS), 2019.

Abstract

Esophageal adenocarcinoma (EA) and its precancerous condition Barrett's esophagus (BE) are multifactorial diseases with rising prevalence rates in Western populations. A recent meta-analysis of genome-wide association studies (GWAS) data identified 14 BE/EA risk loci located in non-coding genomic regions. Knowledge about the impact of non-coding variation on disease pathology is incomplete and needs further investigation. The aim of the present study was (i) to identify candidate genes of functional relevance to BE/EA at known risk loci and (ii) to find novel risk loci among the suggestively associated variants through the integration of expression quantitative trait loci (eQTL) and genetic association data. eQTL data from two BE/EA-relevant tissues (esophageal mucosa and gastroesophageal junction) generated within the context of the GTEx project were cross-referenced with the GWAS meta-analysis data. Variants representing an eQTL in at least one of the two tissues were categorized into genome-wide significant loci (P < 5×10-8) and novel candidate loci (5×10-8 ≤ P ≤ 5×10-5). To follow up these novel candidate loci, a genetic association study was performed in a replication cohort comprising 1,993 cases and 967 controls followed by a combined analysis with the GWAS meta-analysis data. The cross-referencing of eQTL and genetic data yielded 2,180 variants that represented 25 loci. Among the previously reported genome-wide significant loci, 22 eQTLs were identified in esophageal mucosa and/or gastroesophageal junction tissue. The regulated genes, most of which have not been linked to BE/EA etiology so far, included C2orf43/LDAH, ZFP57, and SLC9A3. Among the novel candidate loci, replication was achieved for two variants (rs7754014, Pcombined = 3.16×10-7 and rs1540, Pcombined = 4.16×10-6) which represent eQTLs for CFDP1 and SLC22A3, respectively. In summary, the present approach identified candidate genes whose expression was regulated by risk variants in disease-relevant tissues. These findings may facilitate the elucidation of BE/EA pathophysiology.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
14
Issue :
12
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.9c36f8077f394aafb298ab13e918fae3
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0227072