Back to Search Start Over

Unveiling the sensory and interneuronal pathways of the neuroendocrine connectome in Drosophila

Authors :
Sebastian Hückesfeld
Philipp Schlegel
Anton Miroschnikow
Andreas Schoofs
Ingo Zinke
André N Haubrich
Casey M Schneider-Mizell
James W Truman
Richard D Fetter
Albert Cardona
Michael J Pankratz
Source :
eLife, Vol 10 (2021)
Publication Year :
2021
Publisher :
eLife Sciences Publications Ltd, 2021.

Abstract

Neuroendocrine systems in animals maintain organismal homeostasis and regulate stress response. Although a great deal of work has been done on the neuropeptides and hormones that are released and act on target organs in the periphery, the synaptic inputs onto these neuroendocrine outputs in the brain are less well understood. Here, we use the transmission electron microscopy reconstruction of a whole central nervous system in the Drosophila larva to elucidate the sensory pathways and the interneurons that provide synaptic input to the neurosecretory cells projecting to the endocrine organs. Predicted by network modeling, we also identify a new carbon dioxide-responsive network that acts on a specific set of neurosecretory cells and that includes those expressing corazonin (Crz) and diuretic hormone 44 (Dh44) neuropeptides. Our analysis reveals a neuronal network architecture for combinatorial action based on sensory and interneuronal pathways that converge onto distinct combinations of neuroendocrine outputs.

Details

Language :
English
ISSN :
2050084X
Volume :
10
Database :
Directory of Open Access Journals
Journal :
eLife
Publication Type :
Academic Journal
Accession number :
edsdoj.9c88b8a123134ed3babb3375a0264da2
Document Type :
article
Full Text :
https://doi.org/10.7554/eLife.65745