Back to Search Start Over

A Deep Long-Term Joint Temporal–Spectral Network for Spectrum Prediction

Authors :
Lei Wang
Jun Hu
Rundong Jiang
Zengping Chen
Source :
Sensors, Vol 24, Iss 5, p 1498 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Spectrum prediction is a promising technique to release spectrum resources and plays an essential role in cognitive radio networks and spectrum situation generating. Traditional algorithms normally focus on one-dimensional or predict spectrum values in a slot-by-slot manner and thus cannot fully perceive the spectrum states in complex environments and lack timeliness. In this paper, a deep learning-based prediction method with a simple structure is developed for temporal–spectral and multi-slot spectrum prediction simultaneously. Specifically, we first analyze and construct spectrum data suitable for the model to simultaneously achieve long-term and multi-dimensional spectrum prediction. Then, a hierarchical spectrum prediction system is developed that takes advantage of the advanced Bi-ConvLSTM and the seq2seq framework. The Bi-ConvLSTM captures time–frequency characteristics of spectrum data, and the seq2seq framework is used for long-term spectrum prediction. Furthermore, the attention mechanism is used to address the limitations of the seq2seq framework that compresses all inputs into fixed-length vectors, resulting in information loss. Finally, the experimental results have shown that the proposed model has a significant advantage over the benchmark schemes. Especially, the proposed spectrum prediction model achieves 6.15%, 0.7749, 1.0978, and 0.9628 in MAPE, MAE, RMSE, and R2, respectively, which is better than all the baseline deep learning models.

Details

Language :
English
ISSN :
14248220
Volume :
24
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.9d865ee6e3464179a364647152081cc4
Document Type :
article
Full Text :
https://doi.org/10.3390/s24051498