Back to Search Start Over

Impaired SUMOylation of FoxA1 promotes nonalcoholic fatty liver disease through down-regulation of Sirt6

Authors :
Dongmei Zou
Jinwen Liao
Min Xiao
Liang Liu
Dongling Dai
Mingguo Xu
Source :
Cell Death and Disease, Vol 15, Iss 9, Pp 1-14 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract Abnormal SUMOylation is implicated in non-alcoholic fatty liver disease (NAFLD) progression. Forkhead box protein A1 (FoxA1) has been shown to protect liver from steatosis, which was down-regulated in NAFLD. This study elucidated the role of FoxA1 deSUMOylation in NAFLD. NAFLD models were established in high-fat diet (HFD)-induced mice and palmitate acid (PAL)-treated hepatocytes. Hepatic steatosis was evaluated by biochemical and histological methods. Lipid droplet formation was determined by BODIPY and Oil red O staining. Target molecule levels were analyzed by RT-qPCR, Western blotting, and immunohistochemistry staining. SUMOylation of FoxA1 was determined by Ni-NTA pull-down assay and SUMOylation assay Ultra Kit. Protein interaction and ubiquitination were detected by Co-IP. Gene transcription was assessed by ChIP and dual luciferase reporter assays. Liver FoxA1 knockout mice developed severe liver steatosis, which could be ameliorated by sirtuin 6 (Sirt6) overexpression. Nutritional stresses reduced Sumo2/3-mediated FoxA1 SUMOylation at lysine residue K6, which promoted lipid droplet formation by repressing fatty acid β-oxidation. Moreover, Sirt6 was a target gene of FoxA1, and Sirt6 transcription activity was restrained by deSUMOylation of FoxA1 at site K6. Furthermore, nutritional stresses-induced deSUMOylation of FoxA1 promoted the ubiquitination and degradation of FoxA1 with assistance of murine double minute 2 (Mdm2). Finally, activating FoxA1 SUMOylation delayed the progression of NAFLD in mice. DeSUMOylation of FoxA1 at K6 promotes FoxA1 degradation and then inhibits Sirt6 transcription, thereby suppressing fatty acid β-oxidation and facilitating NAFLD development. Our findings suggest that FoxA1 SUMOylation activation might be a promising therapeutic strategy for NAFLD.

Subjects

Subjects :
Cytology
QH573-671

Details

Language :
English
ISSN :
20414889
Volume :
15
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Cell Death and Disease
Publication Type :
Academic Journal
Accession number :
edsdoj.9e06ca83b3c4e26ad6b275e7f211402
Document Type :
article
Full Text :
https://doi.org/10.1038/s41419-024-07054-1