Back to Search Start Over

Video Multi-Scale-Based End-to-End Rate Control in Deep Contextual Video Compression

Authors :
Lili Wei
Zhenglong Yang
Hua Zhang
Xinyu Liu
Weihao Deng
Youchao Zhang
Source :
Applied Sciences, Vol 14, Iss 13, p 5573 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

In recent years, video data have increased in size, which results in enormous transmission pressure. Rate control plays an important role in stabilizing video stream transmissions by balancing the rate and distortion of video compression. To achieve high-quality videos through low-bandwidth transmission, video multi-scale-based end-to-end rate control is proposed. First, to reduce video data, the original video is processed using multi-scale bicubic downsampling as the input. Then, the end-to-end rate control model is implemented. By fully using the temporal coding correlation, a two-branch residual-based network and a two-branch regression-based network are designed to obtain the optimal bit rate ratio and Lagrange multiplier λ for rate control. For restoring high-resolution videos, a hybrid efficient distillation SISR network (HEDS-Net) is designed to build low-resolution and high-resolution feature dependencies, in which a multi-branch distillation network, a lightweight attention LCA block, and an upsampling network are used to transmit deep extracted frame features, enhance feature expression, and improve image detail restoration abilities, respectively. The experimental results show that the PSNR and SSIM BD rates of the proposed multi-scale-based end-to-end rate control are −1.24% and −0.50%, respectively, with 1.82% rate control accuracy.

Details

Language :
English
ISSN :
20763417
Volume :
14
Issue :
13
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.9e6e12008704fc9a762957073750dc3
Document Type :
article
Full Text :
https://doi.org/10.3390/app14135573