Back to Search Start Over

Transformer-Based Deep Learning Strategies for Lithium-Ion Batteries SOX Estimation Using Regular and Inverted Embedding

Authors :
John Guirguis
Ahmed Abdulmaksoud
Mohanad Ismail
Phillip J. Kollmeyer
Ryan Ahmed
Source :
IEEE Access, Vol 12, Pp 167108-167119 (2024)
Publication Year :
2024
Publisher :
IEEE, 2024.

Abstract

The accurate estimation of Li-ion battery (LIB) states such as State of Charge (SOC), State of Health (SOH), and State of Power (SOP) plays a pivotal role in the efficient operation of Electric Vehicles (EVs). These parameters can impact the battery’s health, driving range, and overall vehicle performance. Transformer-based artificial neural networks have shown impressive results in natural language processing (NLP) and estimation problems of many other domains. This paper presents an intensive study on the capabilities of various Transformer-based models in estimating the SOC and SOH of LIBs, the SOP is obtained based on the estimated SOC. This paper provides the following key original contributions: 1) the application of the Informer and Reformer variants of the Transformer model for the first time for SOH estimation of LIBs in EVs, 2) studying the effect of inverted embedding of iTransformers, a modified architecture of the transformers, on SOC and SOH estimation, inversion is performed on the Informer and Reformer as well; 3) applying a simple feature extraction method using partial discharge cycles for SOH estimation with Transformer-based models; 4) a new robust method is proposed for SOC estimation based on a 2-Encoder-Transformer with a one-dimensional convolutional neural network (1D-CNN) architecture; 5) the various architectures are trained, validated and tested on two real-world datasets comprising various driving scenarios and battery conditions. Comparative analysis with various deep learning architectures show impressive accuracy for estimating the SOC and SOH, leading to better SOP calculation.

Details

Language :
English
ISSN :
21693536 and 00272256
Volume :
12
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.9e7fe002a3dc4859943d423f00272256
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2024.3495560