Back to Search Start Over

A Third-Order Differential Equation and Starlikeness of a Double Integral Operator

Authors :
Rosihan M. Ali
See Keong Lee
K. G. Subramanian
A. Swaminathan
Source :
Abstract and Applied Analysis, Vol 2011 (2011)
Publication Year :
2011
Publisher :
Wiley, 2011.

Abstract

Functions f(z)=z+∑2∞‍anzn that are analytic in the unit disk and satisfy the differential equation f'(z)+αzf''(z)+γz2f'''(z)=g(z) are considered, where g is subordinated to a normalized convex univalent function h. These functions f are given by a double integral operator of the form f(z)=∫01∫01‍G(ztμsν)t-μs-νds dt with G' subordinated to h. The best dominant to all solutions of the differential equation is obtained. Starlikeness properties and various sharp estimates of these solutions are investigated for particular cases of the convex function h.

Subjects

Subjects :
Mathematics
QA1-939

Details

Language :
English
ISSN :
10853375 and 16870409
Volume :
2011
Database :
Directory of Open Access Journals
Journal :
Abstract and Applied Analysis
Publication Type :
Academic Journal
Accession number :
edsdoj.9f179b8a0ac048e9baecb9879fd8ca59
Document Type :
article
Full Text :
https://doi.org/10.1155/2011/901235