Back to Search Start Over

Comparison of surface ozone simulation among selected regional models in MICS-Asia III – effects of chemistry and vertical transport for the causes of difference

Authors :
H. Akimoto
T. Nagashima
J. Li
J. S. Fu
D. Ji
J. Tan
Z. Wang
Source :
Atmospheric Chemistry and Physics, Vol 19, Pp 603-615 (2019)
Publication Year :
2019
Publisher :
Copernicus Publications, 2019.

Abstract

In order to clarify the causes of variability among the model outputs for surface ozone in the Model Intercomparison Study Asia Phase III (MICS-Asia III), three regional models, CMAQ v.5.0.2, CMAQ v.4.7.1, and NAQPMS (abbreviated as NAQM in this paper), have been selected. Detailed analyses of monthly averaged diurnal variation have been performed for selected grids covering the metropolitan areas of Beijing and Tokyo and at a remote oceanic site, Oki. The chemical reaction mechanism, SAPRC99, used in the CMAQ models tended to give a higher net chemical ozone production than CBM-Z used in NAQM, agreeing with previous studies. Inclusion of the heterogeneous “renoxification” reaction of HNO3 (on soot surface)→NO+NO2 only in NAQM would give a higher NO concentration resulting in a better agreement with observational data for NO and nighttime O3 mixing ratios. In addition to chemical processes, the difference in the vertical transport of O3 was found to affect the simulated results significantly. Particularly, the increase in downward O3 flux from the upper layer to the surface after dawn was found to be substantially different among the models. Larger early morning vertical transport of O3 simulated by CMAQ 5.0.2 is thought to be the reason for higher daytime O3 in July in this model. All three models overestimated the daytime ozone by ca. 20 ppbv at the remote site Oki in July, where in situ photochemical activity is minimal.

Subjects

Subjects :
Physics
QC1-999
Chemistry
QD1-999

Details

Language :
English
ISSN :
16807316 and 16807324
Volume :
19
Database :
Directory of Open Access Journals
Journal :
Atmospheric Chemistry and Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.9ff2631b03c8453997ebe7824edf0571
Document Type :
article
Full Text :
https://doi.org/10.5194/acp-19-603-2019