Back to Search Start Over

A Nonlinear Adaptive Beamforming Algorithm Based on Least Squares Support Vector Regression

Authors :
Hongbin Xu
Zhengzhou Li
Gang Jin
Lutao Wang
Source :
Sensors, Vol 12, Iss 9, Pp 12424-12436 (2012)
Publication Year :
2012
Publisher :
MDPI AG, 2012.

Abstract

To overcome the performance degradation in the presence of steering vector mismatches, strict restrictions on the number of available snapshots, and numerous interferences, a novel beamforming approach based on nonlinear least-square support vector regression machine (LS-SVR) is derived in this paper. In this approach, the conventional linearly constrained minimum variance cost function used by minimum variance distortionless response (MVDR) beamformer is replaced by a squared-loss function to increase robustness in complex scenarios and provide additional control over the sidelobe level. Gaussian kernels are also used to obtain better generalization capacity. This novel approach has two highlights, one is a recursive regression procedure to estimate the weight vectors on real-time, the other is a sparse model with novelty criterion to reduce the final size of the beamformer. The analysis and simulation tests show that the proposed approach offers better noise suppression capability and achieve near optimal signal-to-interference-and-noise ratio (SINR) with a low computational burden, as compared to other recently proposed robust beamforming techniques.

Details

Language :
English
ISSN :
14248220
Volume :
12
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Sensors
Publication Type :
Academic Journal
Accession number :
edsdoj.b0fdb9257396445c8e9f39fb6dd2714c
Document Type :
article
Full Text :
https://doi.org/10.3390/s120912424