Back to Search Start Over

Association of Acute Postoperative Pain and Cigarette Smoking With Cerebrospinal Fluid Levels of Beta-Endorphin and Substance P

Authors :
Fan Wang
Hui Li
Qingshuang Mu
Ligang Shan
Yimin Kang
Shizhuo Yang
Hui-Chih Chang
Kuan-Pin Su
Yanlong Liu
Source :
Frontiers in Molecular Neuroscience, Vol 14 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Objectives: Cigarette smoking is associated with postoperative pain perception, which might be mediated by beta-endorphin and substance P. These effects on postoperative pain perception have never been investigated in human cerebrospinal fluid (CSF), which reflects biochemical alterations in the brain. Therefore, we investigated the associations among cigarette smoking, postoperative pain, and levels of beta-endorphin and substance P in human CSF.Methods: We recruited 160 Chinese men (80 active smokers and 80 nonsmokers) who underwent lumbar puncture before anterior cruciate ligament reconstruction, and 5-ml CSF samples were collected. Pain visual analog scale (VAS) scores, post-anesthetic recovery duration (PARD), and smoking variables were obtained. CSF levels of beta-endorphin and substance P were measured.Results: Compared to non-smokers, active smokers had significantly higher pain VAS (2.40 ± 0.67 vs. 1.70 ± 0.86, p < 0.001) and PARD scores (9.13 ± 2.11 vs. 7.27 ± 1.35, p = 0.001), lower CSF beta-endorphin (33.76 ± 1.77 vs. 35.66 ± 2.20, p = 0.001) and higher CSF substance P (2,124.46 ± 217.34 vs. 1,817.65 ± 302.14, p < 0.001) levels. Pain VAS scores correlated with PARD in active smokers (r = 0.443, p = 0.001).Conclusions: Cigarette smoking is associated with increased postoperative pain intensity, shown by delayed pain perception, higher pain VAS scores, and lower beta-endorphin and higher substance P levels in the CSF of active smokers. The more extended postoperative pain perception is delayed, the more pain intensity increases.

Details

Language :
English
ISSN :
16625099
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Molecular Neuroscience
Publication Type :
Academic Journal
Accession number :
edsdoj.b110347beb5948d482d634dd2e43883d
Document Type :
article
Full Text :
https://doi.org/10.3389/fnmol.2021.755799