Back to Search Start Over

RA-MRS: A high efficient attribute reduction algorithm in big data

Authors :
Linzi Yin
Ke Cao
Zhaohui Jiang
Zhanqi Li
Source :
Journal of King Saud University: Computer and Information Sciences, Vol 36, Iss 5, Pp 102064- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Efficient attribute reduction algorithm capable of handling high dimensional big data is one of the hot topics of rough set theory, and some related researchers have achieved with |C| jobs. In this paper, we present the definition of a marked reduction set and propose a more efficient attribute reduction algorithm (RA-MRS). The RA-MRS includes a batch processing phase and a vibration optimization phase, which reduce the number of jobs from |C| to log2|C|. Additionally, we provide an effective judgment strategy based on MapReduce, which supports the exception processing mechanism of Java to interrupt and advance the current job. Finally, the proposed algorithm is implemented in parallel based on Spark computing framework. The experimental results show that the proposed RA-MRS algorithm is over 99% faster than the classical PAAR_PR algorithm and 70% faster than the algorithm in the literature (Yin et al., 2021).

Details

Language :
English
ISSN :
13191578
Volume :
36
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Journal of King Saud University: Computer and Information Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.b11cb82068564caa8db2874b98f56155
Document Type :
article
Full Text :
https://doi.org/10.1016/j.jksuci.2024.102064