Back to Search Start Over

Structures, and Thermophysical Properties Characterizations of (La1-xHox)3NbO7 Solid Solutions as Thermal Barrier Coatings

Authors :
Lin Chen
Yitao Wang
Qi Zheng
Jing Feng
Source :
Frontiers in Materials, Vol 8 (2021)
Publication Year :
2021
Publisher :
Frontiers Media S.A., 2021.

Abstract

A sequence of (La1-xHox)3NbO7 solid solutions were fabricated in this work, which were studied as candidate for thermal insulation materials. The lattices were identified via XRD, when SEM and EDS were used to characterize the microstructures and element distributions. The results showed that the highest modulus, hardness, and toughness of (La1-xHox)3NbO7 were 196 GPa, 9.2 GPa, and 1.6 MPa m1/2, respectively, and they accorded with the mechanical property requirements. Also, a low thermal conductivity (1.06 W m−1 K−1) and high thermal expansion coefficients (TECs: 11.3 × 10−6 K−1) were simultaneously realized in (La3/6Ho3/6)3NbO7, at high temperatures. No phase transition was detected up to 1,200°C, which proved their good high-temperature lattice stability. The intense anharmonic lattice vibrations might contribute to the outstanding thermal properties of (La1-xHox)3NbO7 ceramics. The suitable modulus, high hardness, low thermal conductivity, and high TECs of (La1-xHox)3NbO7 solid solutions proclaimed that they were exceptional thermal insulation ceramics.

Details

Language :
English
ISSN :
22968016
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Frontiers in Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.b13e9fdbb9f04a658a711aedbc18e2da
Document Type :
article
Full Text :
https://doi.org/10.3389/fmats.2021.703098