Back to Search Start Over

CostNet: A Concise Overpass Spatiotemporal Network for Predictive Learning

Authors :
Fengzhen Sun
Shaojie Li
Shaohua Wang
Qingjun Liu
Lixin Zhou
Source :
ISPRS International Journal of Geo-Information, Vol 9, Iss 4, p 209 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Predicting the futures from previous spatiotemporal data remains a challenging topic. There have been many previous works on predictive learning. However, mainstream models suffer from huge memory usage or the gradient vanishing problem. Enlightened by the idea from the resnet, we propose CostNet, a novel recursive neural network (RNN)-based network, which has a horizontal and vertical cross-connection. The core of this network is a concise unit, named Horizon LSTM with a fast gradient transmission channel, which can extract spatial and temporal representations effectively to alleviate the gradient propagation difficulty. In the vertical direction outside of the unit, we add overpass connections from unit output to the bottom layer, which can capture the short-term dynamics to generate precise predictions. Our model achieves better prediction results on moving-mnist and radar datasets than the state-of-the-art models.

Details

Language :
English
ISSN :
22209964
Volume :
9
Issue :
4
Database :
Directory of Open Access Journals
Journal :
ISPRS International Journal of Geo-Information
Publication Type :
Academic Journal
Accession number :
edsdoj.b1846bc088044fdeb71f9e393d8ecab0
Document Type :
article
Full Text :
https://doi.org/10.3390/ijgi9040209