Back to Search Start Over

Mechanisms and consequences of casein kinase II and ankyrin-3 regulation of the epithelial Na+ channel

Authors :
Tarek Mohamed Abd El-Aziz
Antonio G. Soares
Elena Mironova
Nina Boiko
Amanpreet Kaur
Crystal R. Archer
James D. Stockand
Jonathan M. Berman
Source :
Scientific Reports, Vol 11, Iss 1, Pp 1-14 (2021)
Publication Year :
2021
Publisher :
Nature Portfolio, 2021.

Abstract

Abstract Activity of the Epithelial Na+ Channel (ENaC) in the distal nephron fine-tunes renal sodium excretion. Appropriate sodium excretion is a key factor in the regulation of blood pressure. Consequently, abnormalities in ENaC function can cause hypertension. Casein Kinase II (CKII) phosphorylates ENaC. The CKII phosphorylation site in ENaC resides within a canonical “anchor” ankyrin binding motif. CKII-dependent phosphorylation of ENaC is necessary and sufficient to increase channel activity and is thought to influence channel trafficking in a manner that increases activity. We test here the hypothesis that phosphorylation of ENaC by CKII within an anchor motif is necessary for ankyrin-3 (Ank-3) regulation of the channel, which is required for normal channel locale and function, and the proper regulation of renal sodium excretion. This was addressed using a fluorescence imaging strategy combining total internal reflection fluorescence (TIRF) microscopy with fluorescence recovery after photobleaching (FRAP) to quantify ENaC expression in the plasma membrane in living cells; and electrophysiology to quantify ENaC activity in split-open collecting ducts from principal cell-specific Ank-3 knockout mice. Sodium excretion studies also were performed in parallel in this knockout mouse. In addition, we substituted a key serine residue in the consensus CKII site in β-ENaC with alanine to abrogate phosphorylation and disrupt the anchor motif. Findings show that disrupting CKII signaling decreases ENaC activity by decreasing expression in the plasma membrane. In the principal cell-specific Ank-3 KO mouse, ENaC activity and sodium excretion were significantly decreased and increased, respectively. These results are consistent with CKII phosphorylation of ENaC functioning as a “switch” that favors Ank-3 binding to increase channel activity.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b1b85344ad40b297a5b5d8718ba07c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-021-94118-3