Back to Search Start Over

Sodium benzoate attenuates 2,8-dihydroxyadenine nephropathy by inhibiting monocyte/macrophage TNF-α expression

Authors :
Yoichi Oshima
Shu Wakino
Takeshi Kanda
Takaya Tajima
Tomoaki Itoh
Kiyotaka Uchiyama
Keiko Yoshimoto
Jumpei Sasabe
Masato Yasui
Hiroshi Itoh
Source :
Scientific Reports, Vol 13, Iss 1, Pp 1-16 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Sodium benzoate (SB), a known D-amino acid oxidase (DAO) enzyme inhibitor, has an anti-inflammatory effect, although its role in renal damage has not been explored. 2,8-dihydroxyadenine crystal induced chronic kidney disease, in which TNF-α is involved in the pathogenesis, was established by oral adenine administration in C57BL/6JJcl mice (AdCKD) with or without SB to investigate its renal protective effects. SB significantly attenuated AdCKD by decreasing serum creatinine and urea nitrogen levels, and kidney interstitial fibrosis and tubular atrophy scores. The survival of AdCKD mice improved 2.6-fold by SB administration. SB significantly decreased the number of infiltrating macrophages observed in the positive F4/80 immunohistochemistry area and reduced the expression of macrophage markers and inflammatory genes, including TNF-α, in the kidneys of AdCKD. Human THP-1 cells stimulated with either lipopolysaccharide or TNF-α showed increased expression of inflammatory genes, although this was significantly reduced by SB, confirming the anti-inflammatory effects of SB. SB exhibited renal protective effects in AdCKD in DAO enzyme deficient mice, suggesting that anti-inflammatory effect of SB was independent of DAO enzyme activity. Moreover, binding to motif DNA sequence, protein level, and mRNA level of NF-κB RelB were significantly inhibited by SB in AdCKD kidneys and lipopolysaccharide treated THP-1 cells, respectively. We report that anti-inflammatory property of SB is independent of DAO enzymatic activity and is associated with down regulated NF-κB RelB as well as its downstream inflammatory genes such as TNF-α in AdCKD.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
13
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b2560e46261f4f9eb7fa1344edd77796
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-023-30056-6