Back to Search
Start Over
Machine Learning-Based Multiclass Anomaly Detection and Classification in Hybrid Active Distribution Networks
- Source :
- IEEE Access, Vol 12, Pp 120131-120141 (2024)
- Publication Year :
- 2024
- Publisher :
- IEEE, 2024.
-
Abstract
- Anomaly detection in power systems is crucial for operational reliability and safety, often addressed through binary classification in existing research. However, a research gap exists in multiclass classification for enhanced reliability. To bridge this gap, this study employs four machine learning (ML) classifiers: Random Forest (RF), Decision Tree, Naive Bayes (NB), and Support Vector Machine (SVM) using comprehensive testing on a dataset comprising sixteen indices and their pair combinations (totaling 136 pairs). These classifiers, trained on a dataset derived from simulating a test system with hybrid DGs, exhibit superior anomaly detection, especially with the $\frac {dv}{dq}\& \frac {dv}{dp}$ pair. Among them, RF and DT classifier achieves precision, recall, and F score of unity and outperforming NB and SVM. The performance of the proposed RF and DT classifiers with $\frac {dv}{dq}\& \frac {dv}{dp}$ pair is compared with existing research papers in terms of accuracy and data division. The comparison shows that the proposed RF and DT classifiers with $\frac {dv}{dq}\& \frac {dv}{dp}$ pair achieve 100% accuracy even with 50% data division, whereas other techniques fail to achieve it even at 20% for testing and 80% for training. The study underscores the critical role of pair selection and classifier combinations in effective anomaly detection, facilitating the implementation of robust mitigating strategies for power system stability.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 12
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b297ce9c82444887afae80522860628f
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2024.3445287