Back to Search Start Over

Experimental Study on Preparation of Inorganic Fibers from Circulating Fluidized Bed Boilers Ash

Authors :
Qingjia Wang
Tuo Zhou
Zhiao Li
Yi Ding
Qiang Song
Man Zhang
Nan Hu
Hairui Yang
Source :
Materials, Vol 17, Iss 15, p 3800 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The ash generated by Circulating Fluidized Bed (CFB) boilers is featured by its looseness and porosity, low content of glassy substances, and high contents of calcium (Ca) and sulfur (S), thus resulting in a low comprehensive utilization rate. Currently, the predominant treatment approach for CFB ash and slag is stacking, which may give rise to issues like environmental pollution. In this paper, CFB ash (with a CaO content of 7.64% and an SO3 content of 1.77%) was used as the main raw material. The high-temperature melting characteristics, viscosity–temperature characteristics, and initial crystallization temperature of samples with different acidity coefficients were investigated. The final drawing temperature range of the samples was determined, and mechanical property tests were conducted on the prepared inorganic fibers. The results show that the addition of dolomite powder has a significant reducing effect on the complete liquid phase temperature. The final drawing temperatures of the samples with different acidity coefficients range as follows: 1270–1318 °C; 1272–1351 °C; 1250–1372 °C; 1280–1380 °C; 1300–1382 °C; and 1310–1384 °C. The drawing temperature of this system is slightly lower than that of basalt fibers. Based on the test results of the mechanical properties of inorganic fibers, the Young’s modulus of the inorganic fibers prepared through the experiment lies between 55 GPa and 74 GPa, which basically meets the performance requirements of inorganic fibers. Consequently, the method of preparing inorganic fibers by using CFB ash and dolomite powder is entirely feasible.

Details

Language :
English
ISSN :
19961944
Volume :
17
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.b3001ab68314c9f892147136f1f4331
Document Type :
article
Full Text :
https://doi.org/10.3390/ma17153800