Back to Search Start Over

Design and Experimental Research of a Non-Destructive Detection Device for High-Precision Cylindrical Roller Dynamic Unbalance

Authors :
Zhuangya Zhang
Baorun Yang
Mingde Duan
Ruijie Gu
Shijie Liang
Yang Chen
Source :
Machines, Vol 12, Iss 10, p 684 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

Due to their small size and light mass, small precision cylindrical rollers present challenges in dynamic unbalance detection, including difficulties in measurement and the risk of surface damage. This paper proposes a non-destructive detection device for assessing the dynamic unbalance of small precision cylindrical rollers. The device utilizes an air flotation support method combined with resonance amplification to indirectly measure the dynamic unbalance. A dynamic model of the air flotation tooling-cylindrical roller vibration system was developed to explore the relationship between the vibration parameters of the air flotation tooling and the dynamic unbalance of the cylindrical roller. Modal analysis and harmonic response analysis were performed, revealing that the amplitude of the vibration system at resonance could be detected using the sensor. Additionally, modal testing was conducted to determine the natural frequency of the system. A non-destructive detection platform was constructed for testing the dynamic unbalance of cylindrical rollers. Microscopic observation of the roller surface before and after testing confirmed that the device successfully performs non-destructive detection of dynamic unbalance.

Details

Language :
English
ISSN :
12100684 and 20751702
Volume :
12
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Machines
Publication Type :
Academic Journal
Accession number :
edsdoj.b3229ceffd924bf0b0346246fc1a3690
Document Type :
article
Full Text :
https://doi.org/10.3390/machines12100684