Back to Search Start Over

Correlation-Based Weight Adjusted Naive Bayes

Authors :
Liangjun Yu
Shengfeng Gan
Yu Chen
Meizhang He
Source :
IEEE Access, Vol 8, Pp 51377-51387 (2020)
Publication Year :
2020
Publisher :
IEEE, 2020.

Abstract

Naive Bayes (NB) is an extremely simple and remarkably effective approach to classification learning, but its conditional independence assumption rarely holds true in real-world applications. Attribute weighting is known as a flexible model via assigning each attribute a different weight discriminatively to improve NB. Attribute weighting approaches can fall into two broad categories: filters and wrappers. Wrappers receive a bigger boost in terms of classification accuracy compared with filters, but the time complexity of wrappers is much higher than filters. In order to improve the time complexity of a wrapper, a filter can be used to optimize the initial weight of all attributes as a preprocessing step. So a hybrid attribute weighting approach is proposed in this paper, and the improved model is called correlation-based weight adjusted naive Bayes (CWANB). In CWANB, the correlation-based attribute weighting filter is used to initialize the attribute weights, and then each weight is optimized by the attribute weight adjustment wrapper where the objective function is designed based on dynamic adjustment of attribute weights. Extensive experimental results show that CWANB outperforms NB and some other existing state-of-the-art attribute weighting approaches in terms of the classification accuracy. Meanwhile, compared with the existing wrapper, the CWANB approach reduces the time complexity dramatically.

Details

Language :
English
ISSN :
21693536
Volume :
8
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.b3ae53b27f014a129883db2b3c5fd2f9
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2020.2973331