Back to Search Start Over

Association study between the gibberellic acid insensitive gene and leaf length in a Lolium perenne L. synthetic variety

Authors :
Auzanneau Jérôme
Huyghe Christian
Escobar-Gutiérrez Abraham J
Julier Bernadette
Gastal François
Barre Philippe
Source :
BMC Plant Biology, Vol 11, Iss 1, p 183 (2011)
Publication Year :
2011
Publisher :
BMC, 2011.

Abstract

Abstract Background Association studies are of great interest to identify genes explaining trait variation since they deal with more than just a few alleles like classical QTL analyses. They are usually performed using collections representing a wide range of variability but which could present a genetic substructure. The aim of this paper is to demonstrate that association studies can be performed using synthetic varieties obtained after several panmictic generations. This demonstration is based on an example of association between the gibberellic acid insensitive gene (GAI) polymorphism and leaf length polymorphism in 'Herbie', a synthetic variety of perennial ryegrass. Methods Leaf growth parameters, consisted of leaf length, maximum leaf elongation rate (LERmax) and leaf elongation duration (LED), were evaluated in spring and autumn on 216 plants of Herbie with three replicates. For each plant, a sequence of 370 bp in GAI was analysed for polymorphism. Results Genetic effect was highly significant for all traits. Broad sense heritabilities were higher for leaf length and LERmax with about 0.7 in each period and 0.5 considering both periods than for LED with about 0.4 in each period and 0.3 considering both periods. GAI was highly polymorphic with an average of 12 bp between two consecutive SNPs and 39 haplotypes in which 9 were more frequent. Linkage disequilibrium declined rapidly with distance with r 2 values lower than 0.2 beyond 150 bp. Sequence polymorphism of GAI explained 8-14% of leaf growth parameter variation. A single SNP explained 4% of the phenotypic variance of leaf length in both periods which represents a difference of 33 mm on an average of 300 mm. Conclusions Synthetic varieties in which linkage disequilibrium declines rapidly with distance are suitable for association studies using the "candidate gene" approach. GAI polymorphism was found to be associated with leaf length polymorphism which was more correlated to LERmax than to LED in Herbie. It is a good candidate to explain leaf length variation in other plant material.

Subjects

Subjects :
Botany
QK1-989

Details

Language :
English
ISSN :
14712229
Volume :
11
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Plant Biology
Publication Type :
Academic Journal
Accession number :
edsdoj.b4315924ad574167ab2ce4693a1f882e
Document Type :
article
Full Text :
https://doi.org/10.1186/1471-2229-11-183