Back to Search Start Over

A rapid minor groove binder PCR method for distinguishing the vaccine strain Brucella abortus 104M

Authors :
Wenlong Nan
Lide Qin
Yong Wang
Yueyong Zhang
Pengfei Tan
Yuqi Chen
Kairong Mao
Yiping Chen
Source :
BMC Veterinary Research, Vol 14, Iss 1, Pp 1-7 (2018)
Publication Year :
2018
Publisher :
BMC, 2018.

Abstract

Abstract Background Brucellosis is a widespread zoonotic disease caused by Gram-negative Brucella bacteria. Immunisation with attenuated vaccine is an effective method of prevention, but it can interfere with diagnosis. Live, attenuated Brucella abortus strain 104M has been used for the prevention of human brucellosis in China since 1965. However, at present, no fast and reliable method exists that can distinguish this strain from field strains. Single nucleotide polymorphism (SNP)-based assays offer a new approach for such discrimination. SNP-based minor groove binder (MGB) and Cycleave assays have been used for rapid identification of four Brucella vaccine strains (B. abortus strains S19, A19 and RB51, and B. melitensis Rev1). The main objective of this study was to develop a PCR assay for rapid and specific detection of strain 104M. Results We developed a SNP-based MGB PCR assay that could successfully distinguish strain 104M from 18 representative strains of Brucella (B. abortus biovars 1, 2, 3, 4, 5, 6, 7 and 9, B. melitensis biovars 1, 2 and 3, B. suis biovars 1, 2, 3 and 4, B. canis, B. neotomae, and B. ovis), four Brucella vaccine strains (A19, S19, S2, M5), and 55 Brucella clinical field strains. The assay gave a negative reaction with four non-Brucella species (Escherichia coli, Pasteurella multocida, Streptococcus suis and Pseudomonas aeruginosa). The minimum sensitivity of the assay, evaluated using 10-fold dilutions of chromosomal DNA, was 220 fg for the 104M strain and 76 fg for the single non-104M Brucella strain tested (B. abortus A19). The assay was also reproducible (intra- and inter-assay coefficients of variation = 0.006–0.022 and 0.012–0.044, respectively). Conclusions A SNP-based MGB PCR assay was developed that could straightforwardly and unambiguously distinguish B. abortus vaccine strain 104M from non-104M Brucella strains. Compared to the classical isolation and identification approaches of bacteriology, this real-time PCR assay has substantial advantages in terms of simplicity and speed, and also reduces potential exposure to live Brucella. The assay developed is therefore a simple, rapid, sensitive, and specific tool for brucellosis diagnosis and control.

Details

Language :
English
ISSN :
17466148
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Veterinary Research
Publication Type :
Academic Journal
Accession number :
edsdoj.b465dfdf90c948899abb5be3fe7695c3
Document Type :
article
Full Text :
https://doi.org/10.1186/s12917-018-1350-2