Back to Search Start Over

The genomic diversification of grapevine clones

Authors :
Amanda M. Vondras
Andrea Minio
Barbara Blanco-Ulate
Rosa Figueroa-Balderas
Michael A. Penn
Yongfeng Zhou
Danelle Seymour
Zirou Ye
Dingren Liang
Lucero K. Espinoza
Michael M. Anderson
M. Andrew Walker
Brandon Gaut
Dario Cantu
Source :
BMC Genomics, Vol 20, Iss 1, Pp 1-19 (2019)
Publication Year :
2019
Publisher :
BMC, 2019.

Abstract

Abstract Background Vegetatively propagated clones accumulate somatic mutations. The purpose of this study was to better appreciate clone diversity and involved defining the nature of somatic mutations throughout the genome. Fifteen Zinfandel winegrape clone genomes were sequenced and compared to one another using a highly contiguous genome reference produced from one of the clones, Zinfandel 03. Results Though most heterozygous variants were shared, somatic mutations accumulated in individual and subsets of clones. Overall, heterozygous mutations were most frequent in intergenic space and more frequent in introns than exons. A significantly larger percentage of CpG, CHG, and CHH sites in repetitive intergenic space experienced transition mutations than in genic and non-repetitive intergenic spaces, likely because of higher levels of methylation in the region and because methylated cytosines often spontaneously deaminate. Of the minority of mutations that occurred in exons, larger proportions of these were putatively deleterious when they occurred in relatively few clones. Conclusions These data support three major conclusions. First, repetitive intergenic space is a major driver of clone genome diversification. Second, clones accumulate putatively deleterious mutations. Third, the data suggest selection against deleterious variants in coding regions or some mechanism by which mutations are less frequent in coding than noncoding regions of the genome.

Details

Language :
English
ISSN :
14712164
Volume :
20
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Genomics
Publication Type :
Academic Journal
Accession number :
edsdoj.b4a2221db29b4912a6e9b1de04d21f38
Document Type :
article
Full Text :
https://doi.org/10.1186/s12864-019-6211-2