Back to Search Start Over

Experimental Study of Magnetocaloric Effect in Tetraaquabis(Hydrogen Maleato)Nickel(II), [Ni(C4H3O4)2(H2O)4]—A Potential Realization of a Spin-1 Spatially Anisotropic Square Lattice with Ferromagnetic Interactions

Authors :
Petro Danylchenko
Róbert Tarasenko
Erik Čižmár
Vladimír Tkáč
Anna Uhrinová
Alžbeta Orendáčová
Martin Orendáč
Source :
Magnetochemistry, Vol 8, Iss 9, p 106 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

An experimental study of the magnetocaloric effect in tetraaquabis(hydrogen maleato)nickel(II), [Ni(C4H3O4)2(H2O)4] powder sample is presented. The magnetocaloric properties of the studied sample were investigated using specific heat and magnetization measurements in magnetic fields up to 9 T in the temperature range from 0.4 to 50 K. A large conventional magnetocaloric effect was found at a temperature of about 3.5 K, where −ΔSM = 8.5 Jkg−1K−1 and 11.2 Jkg−1K−1 for a magnetic field of 5 T and 7 T, respectively. Assuming a substantial role of the crystal field, the temperature dependence of the magnetic specific heat in a zero magnetic field was compared with an S = 1 model with single-ion anisotropy parameters D and E (axial and rhombic). The best agreement was found for the parameters D/kB = −7.82 K and E/kB = −2.15 K. On the other hand, the experimental temperature dependence of −ΔSM shows higher values compared to the theoretical prediction for the mentioned model, indicating the presence of additional factors in the system, such as an exchange interaction between magnetic ions. The first exchange pathway can be realized through maleic rings between the nearest Ni(II) ions. The second exchange pathway can be realized through water molecules approximately along the a crystallographic axis. Broken-symmetry DFT calculations performed using the computational package ORCA provided the values of ferromagnetic exchange interactions, J1/kB = 1.50 K and J2/kB = 1.44 K (using B3LYP functional). The presence of such ferromagnetic correlations in the studied system may explain the enhanced magnetocaloric effect compared with the model of an anisotropic spin-1 paramagnet.

Details

Language :
English
ISSN :
23127481
Volume :
8
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Magnetochemistry
Publication Type :
Academic Journal
Accession number :
edsdoj.b561b526220a4036b815c5deb532cb4f
Document Type :
article
Full Text :
https://doi.org/10.3390/magnetochemistry8090106