Back to Search Start Over

Risk stratification and overall survival prediction in extensive stage small cell lung cancer after chemotherapy with immunotherapy based on CT radiomics

Authors :
Fang Wang
Wujie Chen
Fangmin Chen
Jinlan Lu
Yanjun Xu
Min Fang
Haitao Jiang
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-8 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract The prognosis of extensive-stage small cell lung cancer is usually poor. In this study, a combined model based on pre-treatment CT radiomics and clinical features was constructed to predict the OS of extensive-stage small cell lung cancer after chemotherapy with immunotherapy.Clinical data of 111 patients with extensive stage small-cell lung cancer who received first-line immunotherapy combined with chemotherapy in our hospital from December 2019 to December 2021 were retrospectively collected. Finally, 93 patients were selected for inclusion in the study, and CT images were obtained through PACS system before treatment. All patients were randomly divided into a training set (n = 66) and a validation set (n = 27). Images were imported into ITK-SNAP to outline areas of interest, and Python software was used to extract radiomics features. A total of 1781 radiomics features were extracted from each patient’s images. The feature dimensions were reduced by MRMR and LASSO methods, and the radiomics features with the greatest predictive value were screened. The weight coefficient of radiomics features was calculated, and the linear combination of the feature parameters and the weight coefficient was used to calculate Radscore. Univariate cox regression analysis was used to screen out the factors significantly associated with prognosis from the radiomics and clinical features, and multivariate cox regression analysis was performed to establish the prognosis prediction model of extensive stage small cell lung cancer. The degree of metastases was selected as a significant clinical prognostic factor by univariate cox regression analysis. Seven radiomics features with significance were selected by LASSO-COX regression analysis, and the Radscore was calculated according to the coefficient of the radiomics features. An alignment diagram survival prediction model was constructed by combining Radscore with the number of metastatic lesions. The study population was stratified into those who survived less than 11 months, and those with a greater than 11 month survival. The C-index was 0.722 (se = 0.044) and 0.68(se = 0.074) in the training and the validation sets, respectively. The Log_rank test results of the combination model were as follows: training set: p

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.b5795bc791004764bf4262724af11b46
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-73331-w