Back to Search Start Over

Efficient Dispersive GSTC-FDTD Algorithm Using the Drude Dispersion Model

Authors :
Sangeun Jang
Jeahoon Cho
Kyung-Young Jung
Source :
IEEE Access, Vol 10, Pp 59486-59494 (2022)
Publication Year :
2022
Publisher :
IEEE, 2022.

Abstract

Metasurfaces are artificial sheets with sub-wavelength thickness and they are two-dimensional equivalents of metamaterials. The generalized sheet transition conditions (GSTCs) have been recently proposed for electromagnetic analysis of the metasurfaces. In GSTCs, the metasurface is generally modeled as a sheet with zero-thickness. However, the conventional finite-difference time-domain (FDTD) method is not straightforwardly applied to analyze electromagnetic wave propagation in the metsurface by harnessing GSTCs because GSTCs exhibit electric and magnetic discontinuities. Alternatively, the GSTC-FDTD formulation is highly suitable for analyzing the electromagnetic properties of metasurfaces by introducing electric and magnetic virtual grids. Meanwhile, metasurfaces can be realized by using 2-D materials such as black phosphorus and thus the dispersion characteristics of metasurfaces should be considered. In this work, we propose an efficient dispersive GSTC-FDTD algorithm by employing the Drude dispersion model. Moreover, for the first time, the numerical surface susceptibility inherent to the dispersive GSTC-FDTD formulation is derived and its numerical accuracy is investigated. Numerical examples illustrate high efficiency of the proposed Drude-dispersive GSTC-FDTD algorithm.

Details

Language :
English
ISSN :
21693536
Volume :
10
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.b5982815f8e04b31bd2b49602ac484fc
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2022.3180505