Back to Search Start Over

Evaluation of bacterial uptake, antibacterial efficacy against Escherichia coli, and cytotoxic effects of moxifloxacin-loaded solid lipid nanoparticles

Authors :
Kiymaci Merve Eylul
Topal Gizem Ruya
Esim Ozgur
Bacanli Merve
Ozkan Cansel Kose
Erdem Onur
Savaser Ayhan
Ozkan Yalcin
Source :
Arhiv za Higijenu Rada i Toksikologiju, Vol 73, Iss 4, Pp 260-269 (2022)
Publication Year :
2022
Publisher :
Sciendo, 2022.

Abstract

Moxifloxacin (MOX) is an important antibiotic commonly used in the treatment of recurrent Escherichia coli (E. coli) infections. The aim of this study was to investigate its antibacterial efficiency when used with solid lipid nanoparticles (SNLs) and nanostructured lipid carriers (NLCs) as delivery vehicles. For this purpose we designed two SLNs (SLN1 and SLN2) and two NLCs (NLC1 and NLC2) of different characteristics (particle size, size distribution, zeta potential, and encapsulation efficiency) and loaded them with MOX to determine its release, antibacterial activity against E. coli, and their cytotoxicity to the RAW 264.7 monocyte/macrophage-like cell line in vitro. With bacterial uptake of 57.29 %, SLN1 turned out to be significantly more effective than MOX given as standard solution, whereas SLN2, NLC1, and NLC2 formulations with respective bacterial uptakes of 50.74 %, 39.26 %, and 32.79 %, showed similar activity to standard MOX. Cytotoxicity testing did not reveal significant toxicity of nanoparticles, whether MOX-free or MOX-loaded, against RAW 264.7 cells. Our findings may show the way for a development of effective lipid carriers that reduce side effects and increase antibacterial treatment efficacy in view of the growing antibiotic resistance.

Details

Language :
English, Croatian
ISSN :
18486312
Volume :
73
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Arhiv za Higijenu Rada i Toksikologiju
Publication Type :
Academic Journal
Accession number :
edsdoj.b5cb5e196af9429ebc0192ac532f1c60
Document Type :
article
Full Text :
https://doi.org/10.2478/aiht-2022-73-3667