Back to Search Start Over

Spectroscopic characterization, DFT, antimicrobial activity and molecular docking studies on 4,5-bis[(E)-2-phenylethenyl]-1H,1′H-2,2′-biimidazole

Authors :
M. Kiruthika
R. Raveena
R. Yogeswaran
N. Elangovan
Natarajan Arumugam
R. Padmanaban
Sinouvassane Djearamane
Ling Shing Wong
Saminathan Kayarohanam
Source :
Heliyon, Vol 10, Iss 9, Pp e29566- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

The newly synthesized imidazole derivative namely, 4,5-bis[(E)-2-phenylethenyl]-1H,1′H-2,2′-biimidazole (KA1), was studied for its molecular geometry, docking studies, spectral analysis and density functional theory (DFT) studies. Experimental vibrational frequencies were compared with scaled ones. The reactivity sites were determined using average localized ionization analysis (ALIE), electron localized function (ELF), localized orbital locator (LOL), reduced density gradient (RDG), Fukui functions and frontier molecular orbital (FMO). Due to the solvent effect, a lower gas phase energy gap was observed. Through utilization of the noncovalent interaction (NCI) method, the hydrogen bond interaction, steric effect and Vander Walls interaction were investigated. Molecular docking simulations were employed to determine the specific atom inside the molecules that exhibits a preference for binding with protein. The parameters for the molecular electrostatic potential (MESP) and global reactivity descriptors were also determined. The thermodynamic characteristics were determined through calculations employing the B3LYP/cc-pVDZ basis set. Antimicrobial activity was carried out using the five different microorganisms like Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Candida albicans.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
9
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.b628d35cbfd944e5a367ed54bdb11cea
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e29566