Back to Search Start Over

Rapid Surface Modification of Ultrafiltration Membranes for Enhanced Antifouling Properties

Authors :
Noresah Said
Ying Siew Khoo
Woei Jye Lau
Mehmet Gürsoy
Mustafa Karaman
Teo Ming Ting
Ebrahim Abouzari-Lotf
Ahmad Fauzi Ismail
Source :
Membranes, Vol 10, Iss 12, p 401 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

In this work, several ultrafiltration (UF) membranes with enhanced antifouling properties were fabricated using a rapid and green surface modification method that was based on the plasma-enhanced chemical vapor deposition (PECVD). Two types of hydrophilic monomers—acrylic acid (AA) and 2-hydroxyethyl methacrylate (HEMA) were, respectively, deposited on the surface of a commercial UF membrane and the effects of plasma deposition time (i.e., 15 s, 30 s, 60 s, and 90 s) on the surface properties of the membrane were investigated. The modified membranes were then subjected to filtration using 2000 mg/L pepsin and bovine serum albumin (BSA) solutions as feed. Microscopic and spectroscopic analyses confirmed the successful deposition of AA and HEMA on the membrane surface and the decrease in water contact angle with increasing plasma deposition time strongly indicated the increase in surface hydrophilicity due to the considerable enrichment of the hydrophilic segment of AA and HEMA on the membrane surface. However, a prolonged plasma deposition time (>15 s) should be avoided as it led to the formation of a thicker coating layer that significantly reduced the membrane pure water flux with no significant change in the solute rejection rate. Upon 15-s plasma deposition, the AA-modified membrane recorded the pepsin and BSA rejections of 83.9% and 97.5%, respectively, while the HEMA-modified membrane rejected at least 98.5% for both pepsin and BSA. Compared to the control membrane, the AA-modified and HEMA-modified membranes also showed a lower degree of flux decline and better flux recovery rate (>90%), suggesting that the membrane antifouling properties were improved and most of the fouling was reversible and could be removed via simple water cleaning process. We demonstrated in this work that the PECVD technique is a promising surface modification method that could be employed to rapidly improve membrane surface hydrophilicity (15 s) for the enhanced protein purification process without using any organic solvent during the plasma modification process.

Details

Language :
English
ISSN :
20770375
Volume :
10
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Membranes
Publication Type :
Academic Journal
Accession number :
edsdoj.b668eb1091fd42bcb3b370a46c1aafa2
Document Type :
article
Full Text :
https://doi.org/10.3390/membranes10120401