Back to Search Start Over

Large field-of-view pine wilt disease tree detection based on improved YOLO v4 model with UAV images

Authors :
Zhenbang Zhang
Chongyang Han
Xinrong Wang
Haoxin Li
Jie Li
Jinbin Zeng
Si Sun
Weibin Wu
Source :
Frontiers in Plant Science, Vol 15 (2024)
Publication Year :
2024
Publisher :
Frontiers Media S.A., 2024.

Abstract

IntroductionPine wilt disease spreads rapidly, leading to the death of a large number of pine trees. Exploring the corresponding prevention and control measures for different stages of pine wilt disease is of great significance for its prevention and control.MethodsTo address the issue of rapid detection of pine wilt in a large field of view, we used a drone to collect multiple sets of diseased tree samples at different times of the year, which made the model trained by deep learning more generalizable. This research improved the YOLO v4(You Only Look Once version 4) network for detecting pine wilt disease, and the channel attention mechanism module was used to improve the learning ability of the neural network.ResultsThe ablation experiment found that adding the attention mechanism SENet module combined with the self-designed feature enhancement module based on the feature pyramid had the best improvement effect, and the mAP of the improved model was 79.91%.DiscussionComparing the improved YOLO v4 model with SSD, Faster RCNN, YOLO v3, and YOLO v5, it was found that the mAP of the improved YOLO v4 model was significantly higher than the other four models, which provided an efficient solution for intelligent diagnosis of pine wood nematode disease. The improved YOLO v4 model enables precise location and identification of pine wilt trees under changing light conditions. Deployment of the model on a UAV enables large-scale detection of pine wilt disease and helps to solve the challenges of rapid detection and prevention of pine wilt disease.

Details

Language :
English
ISSN :
1664462X
Volume :
15
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.b6e21588a9b24834bb99a363140ec482
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2024.1381367