Back to Search Start Over

Post mortem evaluation of inflammation, oxidative stress, and PPARγ activation in a nonhuman primate model of cardiac sympathetic neurodegeneration.

Authors :
Jeanette M Metzger
Helen N Matsoff
Alexandra D Zinnen
Rachel A Fleddermann
Viktoriya Bondarenko
Heather A Simmons
Andres Mejia
Colleen F Moore
Marina E Emborg
Source :
PLoS ONE, Vol 15, Iss 1, p e0226999 (2020)
Publication Year :
2020
Publisher :
Public Library of Science (PLoS), 2020.

Abstract

Cardiac dysautonomia is a common nonmotor symptom of Parkinson's disease (PD) associated with loss of sympathetic innervation to the heart and decreased plasma catecholamines. Disease-modifying strategies for PD cardiac neurodegeneration are not available, and biomarkers of target engagement are lacking. Systemic administration of the catecholaminergic neurotoxin 6-hydroxydopamine (6-OHDA) recapitulates PD cardiac dysautonomia pathology. We recently used positron emission tomography (PET) to visualize and quantify cardiac sympathetic innervation, oxidative stress, and inflammation in adult male rhesus macaques (Macaca mulatta; n = 10) challenged with 6-OHDA (50mg/kg; i.v.). Twenty-four hours post-intoxication, the animals were blindly and randomly assigned to receive daily doses of the peroxisome proliferator-activated receptor gamma (PPARγ) agonist pioglitazone (n = 5; 5mg/kg p.o.) or placebo (n = 5). Quantification of PET radioligand uptake showed increased oxidative stress and inflammation one week after 6-OHDA which resolved to baseline levels by twelve weeks, at which time pioglitazone-treated animals showed regionally preserved sympathetic innervation. Here we report post mortem characterization of heart and adrenal tissue in these animals compared to age and sex matched normal controls (n = 5). In the heart, 6-OHDA-treated animals showed a significant loss of sympathetic nerve fibers density (tyrosine hydroxylase (TH)-positive fibers). The anatomical distribution of markers of sympathetic innervation (TH) and inflammation (HLA-DR) significantly correlated with respective in vivo PET findings across left ventricle levels and regions. No changes were found in alpha-synuclein immunoreactivity. Additionally, CD36 protein expression was increased at the cardiomyocyte intercalated discs following PPARγ-activation compared to placebo and control groups. Systemic 6-OHDA decreased adrenal medulla expression of catecholamine producing enzymes (TH and aromatic L-amino acid decarboxylase) and circulating levels of norepinephrine, which were attenuated by PPARγ-activation. Overall, these results validate in vivo PET findings of cardiac sympathetic innervation, oxidative stress, and inflammation and illustrate cardiomyocyte CD36 upregulation as a marker of PPARγ target engagement.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
19326203
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
PLoS ONE
Publication Type :
Academic Journal
Accession number :
edsdoj.b6fca1d7e97d4c7cbaf1adadc04c9cb4
Document Type :
article
Full Text :
https://doi.org/10.1371/journal.pone.0226999