Back to Search Start Over

Decontamination of Ti Oxide Surfaces by Using Ultraviolet Light: Hg-Vapor vs. LED-Based Irradiation

Authors :
Nagore Arroyo-Lamas
Unai Ugalde
Iciar Arteagoitia
Source :
Antibiotics, Vol 9, Iss 11, p 724 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

C-range Ultraviolet (UVC) mercury (Hg)-vapor lamps have shown the successful decontamination of hydrocarbons and antimicrobial effects from titanium surfaces. This study focused on surface chemistry modifications of titanium dental implants by using two different light sources, Hg-vapor lamps and Light Emitting Diodes (LEDs), so as to compare the effectivity of both photofunctionalization technologies. Two different devices, a small Hg-vapor lamp (λ = 254 nm) and a pair of closely placed LEDs (λ = 278 nm), were used to irradiate the implants for 12 min. X-ray Photoelectron Spectroscopy (XPS) was employed to characterize the chemical composition of the surfaces, analysing the samples before and after the lighting treatment, performing a wide and narrow scan around the energy peaks of carbon, oxygen and titanium. XPS analysis showed a reduction in the concentration of surface hydrocarbons in both UVC technologies from around 26 to 23.4 C at.% (carbon atomic concentration). Besides, simultaneously, an increase in concentration of oxygen and titanium was observed. LED-based UVC photofunctionalization has been suggested to be as effective a method as Hg-vapor lamps to remove the hydrocarbons from the surface of titanium dental implants. Therefore, due to the increase in worldwide mercury limitations, LED-based technology could be a good alternative decontamination source.

Details

Language :
English
ISSN :
20796382
Volume :
9
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Antibiotics
Publication Type :
Academic Journal
Accession number :
edsdoj.b770df65974f4bb3ae4a166d3ec5607c
Document Type :
article
Full Text :
https://doi.org/10.3390/antibiotics9110724