Back to Search
Start Over
Deep Learning and Simulation for the Estimation of Red Blood Cell Flux With Optical Coherence Tomography
- Source :
- Frontiers in Neuroscience, Vol 16 (2022)
- Publication Year :
- 2022
- Publisher :
- Frontiers Media S.A., 2022.
-
Abstract
- We present a deep learning and simulation-based method to measure cortical capillary red blood cell (RBC) flux using Optical Coherence Tomography (OCT). This method is more accurate than the traditional peak-counting method and avoids any user parametrization, such as a threshold choice. We used data that was simultaneously acquired using OCT and two-photon microscopy to uncover the distribution of parameters governing the height, width, and inter-peak time of peaks in OCT intensity associated with the passage of RBCs. This allowed us to simulate thousands of time-series examples for different flux values and signal-to-noise ratios, which we then used to train a 1D convolutional neural network (CNN). The trained CNN enabled robust measurement of RBC flux across the entire network of hundreds of capillaries.
Details
- Language :
- English
- ISSN :
- 1662453X
- Volume :
- 16
- Database :
- Directory of Open Access Journals
- Journal :
- Frontiers in Neuroscience
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b8aa2dba6461463082c417fe40645d72
- Document Type :
- article
- Full Text :
- https://doi.org/10.3389/fnins.2022.835773