Back to Search
Start Over
Bridging molecular-scale interfacial science with continuum-scale models
- Source :
- Nature Communications, Vol 15, Iss 1, Pp 1-14 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Portfolio, 2024.
-
Abstract
- Abstract Solid–water interfaces are crucial for clean water, conventional and renewable energy, and effective nuclear waste management. However, reflecting the complexity of reactive interfaces in continuum-scale models is a challenge, leading to oversimplified representations that often fail to predict real-world behavior. This is because these models use fixed parameters derived by averaging across a wide physicochemical range observed at the molecular scale. Recent studies have revealed the stochastic nature of molecular-level surface sites that define a variety of reaction mechanisms, rates, and products even across a single surface. To bridge the molecular knowledge and predictive continuum-scale models, we propose to represent surface properties with probability distributions rather than with discrete constant values derived by averaging across a heterogeneous surface. This conceptual shift in continuum-scale modeling requires exponentially rising computational power. By incorporating our molecular-scale understanding of solid–water interfaces into continuum-scale models we can pave the way for next generation critical technologies and novel environmental solutions.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 20411723
- Volume :
- 15
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Nature Communications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b92c0f62846b3a8c04da8572c8a8b
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41467-024-49598-y