Back to Search
Start Over
MicroRNA-449a Inhibition Protects H9C2 Cells Against Hypoxia/Reoxygenation-Induced Injury by Targeting the Notch-1 Signaling Pathway
- Source :
- Cellular Physiology and Biochemistry, Vol 46, Iss 6, Pp 2587-2600 (2018)
- Publication Year :
- 2018
- Publisher :
- Cell Physiol Biochem Press GmbH & Co KG, 2018.
-
Abstract
- Background/Aims: The present study aimed to detect the expression of miR-449a and investigate the effect of miR-449a on cell injury in cardiomyocytes subjected to hypoxia/ reoxygenation (H/R) and its underlying mechanisms. Methods: The expression of miR-449a was determined using reverse transcription–polymerase chain reaction in both neonatal rat ventricular myocytes and H9C2 cells. For gain-of-function and loss-of-function studies, H9C2 cells were transfected with either miR-449a mimics or miR-449a inhibitor. The target gene of miR-449a was confirmed by a dual-luciferase reporter assay. Apoptosis was analyzed by both flow cytometry using Annexin V and propidium iodide and transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL). Necrosis was confirmed by the detection of lactate dehydrogenase release. The cell viability was measured using the methylthiotetrazole method. The protein levels of Notch-1, Notch-1 intracellular domain, hairy and enhancer of split-1 (Hes-1), and apoptosis-related genes were measured by Western blot analysis. Results: MiR-449a was significantly upregulated in both neonatal rat ventricular myocytes and H9C2 cells subjected to H/R. However, H/R-induced cell apoptosis and necrosis were markedly reduced by miR-449a inhibition. By targeting Notch-1, miR-449a regulated the Notch-1/ Hes-1 signaling pathway. The blockade of the Notch signaling pathway partly abolished the protective effect of miR-449a suppression against H/R injury, whereas the overexpression of Notch-1 intracellular domain partly reversed the effect of miR-449a overexpression on H/R-induced cell injury. Conclusions: The present study suggested that miR-449a inhibition protected H9C2 cells against H/R-induced cell injury by targeting the Notch-1 signaling pathway, providing a novel insight into the molecular basis of myocardial ischemia–reperfusion injury and a potential therapeutic target.
Details
- Language :
- English
- ISSN :
- 10158987, 14219778, and 00048968
- Volume :
- 46
- Issue :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Cellular Physiology and Biochemistry
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b943cc13f591452ba97fcffbbfadc415
- Document Type :
- article
- Full Text :
- https://doi.org/10.1159/000489686