Back to Search Start Over

Tubule system of earliest shells as a defense against increasing microbial attacks

Authors :
Luoyang Li
Timothy P. Topper
Marissa J. Betts
Gundsambuu Altanshagai
Batktuyag Enkhbaatar
Guoxiang Li
Sanzhong Li
Christian B. Skovsted
Linhao Cui
Xingliang Zhang
Source :
iScience, Vol 27, Iss 3, Pp 109112- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

Summary: The evolutionary mechanism behind the early Cambrian animal skeletonization was a complex and multifaceted process involving environmental, ecological, and biological factors. Predation pressure, oxygenation, and seawater chemistry change have frequently been proposed as the main drivers of this biological innovation, yet the selection pressures from microorganisms have been largely overlooked. Here we present evidence that calcareous shells of the earliest mollusks from the basal Cambrian (Fortunian Age, ca. 539–529 million years ago) of Mongolia developed advanced tubule systems that evolved primarily as a defensive strategy against extensive microbial attacks within a microbe-dominated marine ecosystem. These high-density tubules, comprising approximately 35% of shell volume, enable nascent mineralized mollusks to cope with increasing microbial bioerosion caused by boring endolithic cyanobacteria, and hence represent an innovation in shell calcification. Our finding demonstrates that enhanced microboring pressures played a significant role in shaping the calcification of the earliest mineralized mollusks during the Cambrian Explosion.

Details

Language :
English
ISSN :
25890042
Volume :
27
Issue :
3
Database :
Directory of Open Access Journals
Journal :
iScience
Publication Type :
Academic Journal
Accession number :
edsdoj.b94534c871a4a6996e4f5390f662279
Document Type :
article
Full Text :
https://doi.org/10.1016/j.isci.2024.109112