Back to Search
Start Over
Review of laser scanning methods for microelectronic semiconductor structures investigation
- Source :
- Безопасность информационных технологий, Vol 29, Iss 4, Pp 105-125 (2022)
- Publication Year :
- 2022
- Publisher :
- Joint Stock Company "Experimental Scientific and Production Association SPELS, 2022.
-
Abstract
- The development and widespread of high-tech microelectronic products impose increased requirements on the quality and reliability of microcircuits. The most effective methods for reliability improvement of electronic systems include diagnostic non-destructive testing (NDT) methods and selective destructive testing in special cases. Studies using visual inspection and electrical testing, consisting of functional and parametric testing, do not provide enough information to detect latent defects (for example, macro-defects in SiO 2 layers in CMOS chips) and to detect fakes and counterfeits. A fake integrated circuit (IC) may contain an undeclared malicious modification of the circuit, called hardware bugs. The common ICs studying tools are systems based on microfocus X-ray sources, scanning acoustic microscopes, optical and scanning electron microscopes, and X-ray fluorescence spectroscopes. Products destruction avoidance is a fundamental point, for example, for the technological process control in crystal manufacturing. Investigation of ICs using a light microscope is one of the most accessible and widespread method of microchip NDT. Semiconductor ICs structure scanning from the side of the device layer is limited by the shielding effect of metallization, since the metal is opaque for light. This limitation can be overcome by an alternative approach to microchip scanning based on irradiating the IC from the side of the substrate with laser sources in the near-IR range. This paper provides a brief overview of the major methods used in laser scanning microscopy to analyze the structures, responses, and features of the operating modes of semiconductor circuits. The main advantages and limitations in the use of optical methods are described, as well as what information about the product can be obtained as a result of laser scanning.
Details
- Language :
- English, Russian
- ISSN :
- 20747128 and 20747136
- Volume :
- 29
- Issue :
- 4
- Database :
- Directory of Open Access Journals
- Journal :
- Безопасность информационных технологий
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b9467c537f9c4e0c9f624624560a373d
- Document Type :
- article
- Full Text :
- https://doi.org/10.26583/bit.2022.4.09