Back to Search
Start Over
Hydrogen Isotopic Composition of Hydrous Minerals in Asteroid Ryugu
- Source :
- The Astrophysical Journal Letters, Vol 946, Iss 2, p L43 (2023)
- Publication Year :
- 2023
- Publisher :
- IOP Publishing, 2023.
-
Abstract
- Rock fragments of the Cb-type asteroid Ryugu returned to Earth by the JAXA Hayabusa2 mission share mineralogical, chemical, and isotopic properties with the Ivuna-type (CI) carbonaceous chondrites. Similar to CI chondrites, these fragments underwent extensive aqueous alteration and consist predominantly of hydrous minerals likely formed in the presence of liquid water on the Ryugu parent asteroid. Here we present an in situ analytical survey performed by secondary ion mass spectrometry from which we have estimated the D/H ratio of Ryugu’s hydrous minerals, D/H _Ryugu , to be [165 ± 19] × 10 ^−6 , which corresponds to δ D _Ryugu = +59 ± 121‰ (2 σ ). The hydrous mineral D/H _Ryugu ’s values for the two sampling sites on Ryugu are similar; they are also similar to the estimated D/H ratio of hydrous minerals in the CI chondrites Orgueil and Alais. This result reinforces a link between Ryugu and CI chondrites and an inference that Ryugu’s samples, which avoided terrestrial contamination, are our best proxy to estimate the composition of water at the origin of hydrous minerals in CI-like material. Based on this data and recent literature studies, the contribution of CI chondrites to the hydrogen of Earth’s surficial reservoirs is evaluated to be ∼3%. We conclude that the water responsible for the alteration of Ryugu’s rocks was derived from water ice precursors inherited from the interstellar medium; the ice partially re-equilibrated its hydrogen with the nebular H _2 before being accreted on the Ryugu’s parent asteroid.
Details
- Language :
- English
- ISSN :
- 20418213 and 20418205
- Volume :
- 946
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- The Astrophysical Journal Letters
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.b94c3776b1a84aab807ecd5489533ad2
- Document Type :
- article
- Full Text :
- https://doi.org/10.3847/2041-8213/acc393